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Abstract—We present TreeIRL, a novel planner for au-
tonomous driving that combines Monte Carlo tree search
(MCTS) and inverse reinforcement learning (IRL) to achieve
state-of-the-art performance in simulation and in real-world
driving. The core idea is to use MCTS to find a promising set
of safe candidate trajectories and a deep IRL scoring function to
select the most human-like among them. We evaluate TreeIRL
against both classical and state-of-the-art planners in large-scale
simulations and on 500+ miles of real-world autonomous driving
in the Las Vegas metropolitan area. Test scenarios include
dense urban traffic, adaptive cruise control, cut-ins, and traffic
lights. TreeIRL achieves the best overall performance, striking a
balance between safety, progress, comfort, and human-likeness.
To our knowledge, our work is the first demonstration of
MCTS-based planning on public roads and underscores the
importance of evaluating planners across a diverse set of
metrics and in real-world environments. TreeIRL is highly
extensible and could be further improved with reinforcement
learning and imitation learning, providing a framework for
exploring different combinations of classical and learning-based
approaches to solve the planning bottleneck in autonomous
driving.

Index Terms—Self-driving cars, autonomous driving, motion
planning, Monte Carlo tree search, inverse reinforcement learn-
ing.

I. INTRODUCTION

Human-level planning and decision making remain the
holy grail of autonomous driving, promising to make trans-
portation safer, cheaper, and more accessible to everyone.
Mirroring broader trends in artificial intelligence, classical
approaches to motion planning that explicitly codify the rules
of driving in symbolic form [1], [2] have given way to
approaches based on machine learning (ML) that learn the
rules of driving from data and represent them implicitly in
sub-symbolic form [3], [4]. While similar developments have
fueled remarkable success in other domains — such as image
processing [5], language processing [6], game play [7], and
even perception and prediction for self-driving cars [8]-[15] —
ML-based planners have struggled to live up to their promise,
raising questions about their utility [16].

Some classical approaches frame the planning problem as
tree search over an appropriate state space [2], [17]-[19].
These approaches can ensure safety with explicit checks
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and can flexibly find solutions in a wide variety of on-
road scenarios [17]. However, they can occasionally produce
uncomfortable and unnatural behavior, something difficult to
remedy with data due to their non-differentiability and small
number of parameters.

ML-based approaches often frame the planning problem
as trajectory regression or classification and are trained on
many hours of human driving [20]-[24]. These approaches
scale with data, producing increasingly human-like behavior
as their many parameters are refined with training. However,
they can struggle to ensure safety, as safety-critical cases are
rarely encountered on the road and in the training data [25].
Similarly, they can struggle to generalize flexibly to scenarios
outside of the data distribution [3].

In this work, we propose TreeIRL, a hybrid approach
that combines classical tree search with a learned classifier
to yield a planner that is safe, comfortable, and human-
like (Fig. 1). The main idea is to repurpose Monte Carlo
tree search (MCTS) as a trajectory generator: instead of
computing a single immediate next action (e.g., control
command), as is usually done, MCTS generates a set of
possible future action sequences (i.e., trajectories). These
candidate trajectories are fed into a scoring function trained
on expert human driving using inverse reinforcement learning
(IRL).

MCTS efficiently explores the trajectory space at decision
time to home in on trajectories that are generally appropriate
for the current situation, effectively selecting the behavior
mode (e.g., slow down, accelerate, stop). The IRL scorer
then takes advantage of the variability around that mode
to further refine behavior by selecting the most human-
like trajectory for execution (e.g., slow down gradually vs.
abruptly). Intuitively, this division of labor delegates safety
and progress to MCTS and comfort to IRL, although we
find empirically that the two complement each other across
multiple metrics to yield a system that is greater than the
sum of its parts.

We evaluate TreeIRL against classical and state-of-the-
art motion planners on challenging urban driving scenarios
in simulation and in the real world. We find that TreeIRL
strikes a balance between safety, comfort, and progress that
achieves the best overall performance. Our contributions are
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Fig. 1. Landscape of motion planning approaches and summary of our results.

as follows:

1) We show how MCTS can be repurposed as a trajectory
generator and combined with IRL to reap the benefits
of both classical and ML-based motion planning.

2) We show how to optimize the latency of the resulting
system in the context of a full autonomous vehicle (AV)
stack, making it suitable for real-world deployment
without sacrificing driving performance.

3) We provide the first real-world demonstration of mo-
tion planning based on MCTS in dense urban traffic.

4) We demonstrate the superiority of TreeIRL by compar-
ing it against vanilla MCTS and other state-of-the-art
planners in large-scale evaluations both in simulation
and in real-world urban driving.

5) We highlight the need for considering a diverse set
of metrics and for performing on-road evaluations to
address the simulation-to-reality (sim-to-real) gap.

II. RELATED WORK

Classical approaches to the motion planning problem rely
on explicit hand-crafted rules that dictate driving behavior at
decision time [1], [2]. The seminal intelligent driver model
(IDM) [26] directly computes the command acceleration
to maintain a safe distance to a lead vehicle, ensuring
collision-free behavior for simple 1-D adaptive cruise control
(ACC). Balancing more complex objectives (e.g., reaching
a goal while maintaining kinematic visibility and avoid-
ing obstacles) in higher-dimensional environments can be
framed as a continuous optimization problem and solved,
for example, using model-predictive control (MPC) [27]-
[29]. Alternatively, the search space can be discretized and
explored using graph search methods such as A* [17], [30] or
MCTS [18], [31]. Search and optimization can be combined
— for example, A* can find a collision-free path to the goal,

while MPC can compute a dynamically feasible trajectory to
track it [19].

Classical approaches can produce reasonable driving be-
havior while providing interpretability and, under certain
conditions, safety guarantees. Search methods in particular
have the potential to handle a wide variety of scenarios as
they can flexibly reason and find solutions even in unusual
situations (e.g, navigating a crowded parking lot after a
football game). However, handcrafted rules occasionally lead
to uncomfortable and unnatural behavior. Furthermore, they
have to be tuned manually, which can be time-consuming
and scale poorly to scenarios requiring subtly different rules,
such as different geolocations or different times of day.

Imitation learning (IL) — or behavior cloning — ap-
proaches learn the rules of driving from human demon-
strations and store them implicitly in the weights of a
neural network [20]-[23]. The promise of IL is scalability:
behavior should improve with more training data. Simple
regression methods such as path-based trajectory prediction
(PBP) have achieved state-of-the-art performance on motion
forecasting [32].

With sufficient training, IL can yield comfortable, human-
like driving behavior in the majority of scenarios. How-
ever, it can struggle on safety-critical edge cases that are
underrepresented in the training data (e.g., aggressive cut-
ins, jaywalkers) [25]. More generally, naive IL suffers from
a distribution shift problem [3], [33], [34]: the discrepancy
between the scenarios observed during training and test time
leads to subtle deviations in behavior, which are compounded
as errors accumulate in closed loop, leading to situations
completely outside of the training distribution and to unde-
fined behavior.

Reinforcement learning (RL) approaches mitigate the
distribution shift problem by training a driving policy to
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satisfy a reward function using closed-loop simulations [35]-
[37]. Through trial-and-error, the policy learns to take ac-
tions that lead to reward (e.g., making progress along the
route) while avoiding punishment (e.g., colliding with other
agents). By virtue of experiencing the outcomes of their own
actions and a much wider variety of scenarios than typically
countered on the road — including many collisions and the
associated “pain” — the resulting policies are more robust to
perturbations and produce safer driving than IL.

While safe and scalable, RL approaches depend heavily
on the reward function and the simulation environment,
which pose their own set of challenges. Designing a reward
function that balances different driving objectives in a way
that leads to safe, human-like driving carries many of the
same difficulties as designing good classical planners [38].
Designing a realistic simulation environment with human-
like reactive agents can prove just as difficult as solving
the planning problem itself [39], [40]. Training with simple
reactive agents can produce unnatural behaviors (e.g., no
fear of rear collisions), and so can training with realistic
but non-reactive agents replayed from real-world driving
data (e.g., excessive fear of rear collisions) [4]. Recently,
Gigaflow [40] addressed this circular dependency using self-
play: the same policy that controls the AV also controls the
other agents, ensuring the simulation also improves gradually
over the course of training. This simple concept — combined
with massive amounts of training — has allowed Gigaflow to
surpass the state of the art on multiple autonomous driving
benchmarks.

Inverse reinforcement learning (IRL) promises to ad-
dress the reward design problem by assuming that human
driving is guided by an implicit reward function, which
IRL attempts to reverse engineer from human demonstra-
tions [41], [42]. In particular, DriveIRL [24] uses this idea
to cast motion planning as a classification problem: a tra-
jectory generator proposes a set of candidate trajectories
and a learned reward function selects the best trajectory
among them. DrivelRL demonstrated comfortable, human-
like driving on a real self-driving car in Las Vegas. However,
it inherits some of safety issues of IL, requiring multiple
takeovers by the safety driver.

Hybrid methods promise to combine the benefits of dif-
ferent approaches. In DrivelRL, “bad” trajectories proposed
by the generator can be excluded using a rule-based safety
filter [24], [43], substantially improving safety. As another
example, IL can be combined with RL to produce a policy
that is human-like and robust in rare, safety-critical scenar-
ios [44]. SafetyNet [45] projects an infeasible ML trajectory
onto a heuristically generated set of lane-follow trajectories.
Lab2Car [19] uses the ML trajectory to construct a set
of spatiotemporal constraints (a “maneuver”) that capture
comfort and safety, which are then satisfied by MPC.

MCTS offers a particular kind of hybrid that combines
classical search with ML in a principled way. The land-
mark defeat of Go champion Lee Sedol by AlphaGo was
achieved with MCTS guided by a policy trained with IL
and RL [46]. Subsequent work combining MCTS with ML

has achieved similarly groundbreaking results in a number
of other domains, including other board games [47] and
video games [48]. Recent work has demonstrated that MCTS
combined with ML also holds promise in the domain of
autonomous driving [49], [50].

The ability of ML-guided MCTS to explore intractably
large trajectory spaces at decision time can in principle lead
to robust, flexible driving across a diverse set of scenarios.
However, the main challenge is latency: the number of iter-
ations necessary to find a good solution grows exponentially
with the search space. While ML can significantly reduce that
number [49], this comes at the cost of running the ML policy
at each iteration of MCTS, which can offset those gains by
dramatically increasing overall latency. As a result, to the
best of our knowledge, all reported applications of MCTS to
self-driving cars have been evaluated only in simulation.

The key insight of our approach is that, instead of produc-
ing a single best action or trajectory, MCTS can produce a
set of candidate trajectories. These trajectories can then be
scored by a reward function learned with IRL to choose the
one which is most human-like. This relaxes the requirements
on MCTS, allowing for a simpler version that fits into
the computational budget of a real self-driving car without
sacrificing overall driving performance.

III. THEORETICAL BACKGROUND

In this section, we review the theoretical background of
MCTS.

A. Markov Decision Process (MDP)

We build on the MDP formalism developed in the RL liter-
ature [51]. A MDP is a tuple M = (S, A, T, R,~, F') where
S is the state space, A is the action space, T: S x A — S
is the transition distribution, R : S x A x S — R is the
reward function, and v € (0, 1] is the discount factor. The
transition distribution T'(s’ | s, a) describes the probability of
transitioning to state s’ after taking action a in state s. The
reward function R(s,a, s") describes the reward obtained by
the agent after taking action a in state s and transitioning to
state s’. Additionally, it is useful to introduce a termination
function F(s) — {0,1} that denotes whether state s is
terminal.

At decision time, the goal of the agent is to choose an
action a* that maximizes its expected return (i.e., sum of
future discounted rewards), starting from current state sg:

a* = argmax E ZO’Yj R(sj,a5,8541) | , 1)
]:

where j denotes the time step in the episode and the
expectation is taken over the distribution of future states
sj+1 ~ T(- | s;,a;) and actions a; ~ (- | s;) resulting
from the transition distribution 7" and the agent’s policy
m:S— A
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Fig. 2. MCTS trajectory generator.

B. Rollout algorithms

Rollout algorithms correspond to a class of decision-
time Monte Carlo planning algorithms that solve Eq. 1 by
repeatedly sampling trajectories from the initial state sq
following a rollout policy myoon, sSimulating their outcomes,
and choosing the action a* that produces the highest average
return across the simulations. These approaches fall under the
banner of model-based RL, as they require complete model
of the environment — the MDP, or an estimate of it — in order
to perform the simulations.

C. Monte Carlo tree search (MCTS)

MCTS improves on rollout algorithms by taking advantage
of the fact that most trajectories will share the same initial
states, which means that previously sampled trajectories can
inform future trajectories (e.g., if going left consistently leads
to simulated collisions, we should try something else) [31].

In particular, MCTS incrementally builds a tree rooted in
the present state sy in which nodes correspond to states
and edges correspond to actions leading to next states
(child nodes). MCTS expands the tree in multiple iterations,
where each iteration consists of the following four steps
(Fig. 2) [51]:

1) Selection: starting from the root state sg, follow a
tree policy that descends down the tree, balancing
exploration and exploitation.

2) Expansion: once a new state is reached, (optionally)
add it to the tree as a new leaf node.

3) Evaluation: estimate the expected return from the leaf
state, either using a value function approximator 1%
(bootstrap estimate), or by computing the simulated
return using a rollout policy monone (Monte Carlo
estimate).

4) Backup: update the tree value estimates Q)(s,a) and
visit counts N (s, a) for all leaf ancestors.

After n of iterations — often dictated by a compute
budget — the tree has O(n) nodes. In the end, the best
action can be chosen either as a* = arg max, Q(so,a) or
a* = argmax, N(sg,a).

D. MCTS as a trajectory generator

The main novel idea behind TreeIRL is that MCTS can be
repurposed to generate a set of trajectories, i.e. promising
sequences of actions, rather than a single next action a*
(Fig. 2, right). After n iterations, we perform depth-first
search (DFS) from the root state sg by visiting child nodes in
decreasing order of N (s, a) — that is, most popular children
first. Let {l1,ls...Ix} correspond to the first k leaves visited
by the DFS (the “top k” leaves). We then perform a rollout
from each I; by following a padding policy Tpadding Until we
reach a terminal state. The resulting sequence of state-action
pairs from the root state sg to a terminal state corresponds
to trajectory T;.

IV. TREEIRL

This section includes a technical description of the
TreelRL planner.

Planner architecture. Our focus is the planning module
of the AV stack (Fig. 3, top), which is responsible both
for high-level decision making (the behavior mode, e.g.
“slow down”) as well as low-level motion planning (the
trajectory to follow). We assume an upstream perception
module computes the scene context ¢ — an object-oriented
representation of the scene around the AV (also referred to as
the ego vehicle or simply the ego) which includes kinematic
information about the ego and the other agents, in addition
to map and route information. The output of the planning
module is a trajectory 7 that is passed to the downstream
control module for tracking and execution.
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Fig. 3. Planner architecture (residual connections omitted).

Specifically, we use a version of the DrivelRL architecture
(Fig. 3, middle) [24], which uses a modular deep neural
network that separates planning into three sub-modules:

« Encoding/prediction: a scene encoder B and decoder D
compute a scene embedding h and predictions p for the
other agents. For this module, we use PBP [32].

o Trajectory generation: a trajectory generator G com-
putes a set of k candidate trajectories {77 ...7y}. For
DrivelRL, G is a heuristic generator that computes
jerk-optimal trajectories that reach a handpicked set of
longitudinal target offsets. It is optionally followed by
safety filter that excludes trajectories likely to result in
collision, a version that we refer to as DriveIRL-Safe.

o Trajectory selection: an IRL scorer, consisting of a
scene-trajectory transformer E and a score transformer
S, computes a score z; for each trajectory 7;, which
quantifies how human-like it is.

TreeIRL uses the same planner architecture and compo-
nents as DrivelRL, except for the generator G, which is
replaced with MCTS (Fig. 2).

Inference. During inference, the trajectory with highest
score is selected on each iteration:

{r1...7} ~ G(c,D(c, B(c)))
7= argmax S(E(c, B(c),7))

Te{T1...Tk }

Training. We pre-train PBP (B and D) for multi-agent
motion prediction, as described previously [32]. We then
keep those weights frozen and train the IRL scorer (F
and S; G is not differentiable) on 80 hours of human
expert driving using maximum-entropy IRL [24], [52], [53],
formulated as a classification problem and optimized using
a focal loss [54]. In particular, the probability of selecting
the optimal trajectory is P(7*) = %, where 7 is
the optimal trajectory and z* is its score (logit). Combining
a negative log-likelihood loss with a focal loss gives the
following loss for a single training sample:

loss = —(1 — P(7%))7 log P(1%),

where v refers to the focusing parameter, not to be
confused with the MDP discount factor (also denoted ) else-
where. For DrivelRL, 7* corresponds to the trajectory from
{71 ...71} that is closest to the human expert ground truth
trajectory in L2 distance (position and velocity), excluding
trajectories in collision with the future trajectories of other
agents.
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TreeIRL is trained in the same way as DrivelRL, except
that the L2 error decays exponentially for waypoints farther
into the future. We put greater emphasis on the initial
waypoints since 1) they are more critical for closed-loop
behavior, 2) they correspond to actions that have been more
thoroughly explored and evaluated by MCTS, 3) the predic-
tions for those waypoints are likely to be more accurate, and
4) ground truth human expert behavior (during training) is
more predictable in the short term. Overall, this allows us
to circumvent a number of issues that arise when training
with longer trajectories, such as mode collapse on scenarios
in which the expert is reacting to future events that cannot
possibly be anticipated at the present (e.g., the traffic light
turning green, or the lead vehicle starting to move).

We also up-weigh the velocity L2 by 5x to place greater
emphasis on matching the expert speed profile, which im-
proves following behavior and comfort in the 1-D longitudi-
nal domain considered here.

Limitations of enumerative trajectory generation. One
of the key insights behind DrivelRL is that the planning
problem can be simplified when separated into trajectory
generation and selection in a fashion reminiscent of gener-
ative adversarial networks [55]. In particular, the trajectory
generator does not have to be particularly sophisticated, as
long as it provides sufficient coverage (i.e., maximum recall).
In turn, the selection mechanism — the learned scoring func-
tion — merely has to discriminate between “good” and “bad”
trajectories (i.e., maximum precision), rather than having to
come up with the best trajectory from scratch.

However, in practice it is challenging to design a trajectory
generator that provides sufficient coverage across a diverse
set of scenarios. In particular, most trajectories output by
the one-size-fits-all heuristic trajectory generator of DriveIRL
are inappropriate for most scenarios, either accelerating or
decelerating too much (Fig. 4, left). Even worse, sometimes
all of the proposed trajectories are inappropriate and may
even be ruled out by the safety filter, making it impossible
for the scorer to find the needle in the haystack.

The key innovation behind TreeIRL is to replace G with
a trajectory generator based on MCTS, which focuses trajec-
tory selection on the narrow part of the trajectory space that
is behaviorally appropriate for the current scenario (Fig. 4,
right). For the rest of this section, we describe the technical
details of the MCTS trajectory generator (Fig. 2).

A. MDP components

We focus on lane following and adaptive cruise control
(ACC). The state and action spaces are restricted to 1-D
longitudinal control along a predefined reference path, in our
case corresponding to the lane centerline. As we show in the
results section, even this simple setup can pose challenges for
state-of-the-art approaches, particularly in real urban driving
scenarios.

State space. Each state includes the longitudinal offset z,
velocity &, and acceleration & of the ego vehicle and the
lead agent (if there is one), as well as the time offset ¢ in
the planning horizon (useful for determining termination and
indexing into predictions). It also includes static information,
such as the maximum longitudinal offset x,x (e.g., the goal,
or a red traffic light) and the speed limit &p,:

s = (xegm i’egm i‘ego, Tleads Tlead, Lleads Ty Tmax, dfmax)

We set ¢t = 0 for the initial state sg.
Action space. The action corresponds to the longitudinal
jerk command, discretized into 5 possibilities:

a= Fego € {—2,—1,0,1,2} m/s?

Transition function. The ego, lead agent, and static
portions of the next state s’ ~ T(- | s,a) are computed
separately. The static components are updated as:

’
t =t+ At
’
Tmax = Lmax
.7 .
LTmax = Lmax

For the ego, we use a simple kinematic model that forward
integrates the jerk command to produce the next ego state:

ilgo = clip (Fego + FegoAt, [—7 m/s®,2 m/s?])
seaf _ "Eégo - iego

Tewo = TN

ity = max (0, dgo + Fego At + 3 50 AF),

/ . 1 - 2 1 eeet 3
Tego = MAX (xcgo, Tego + Tego At + 5 Fego AL” + 5 T'ego AL ),

where @', is the effective jerk (not included in the state)
that takes into account the acceleration clamp. We use a
time step of At = 0.5 s. Note that driving in reverse is
not allowed.

For the other agents, we use a non-reactive world model
based on the (top mode) predictions p from PBP:

Tlead Tlead L1eas = PREDICTED_LEAD_AGENT (Z¢go, P t')

In particular, the lead agent at time ¢’ is defined as the
closest agent projected onto the reference path in front of
the ego predicted to be within 2 m of the reference path at
time ¢'. If there is no such agent, the lead portion of the state
is left empty. While this results in a simplified non-reactive
world model, it significantly reduces latency compared to a
reactive world model.
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All transitions are deterministic, so for convenience we can
write s’ < T'(s, a).

Reward function. The reward is a weighted sum of
comfort, tracking, safety, and clearance terms, together with
a buffer reward when the ego vehicle stops at a desired
distance:

R(s,a,s") = —acost(s’), where

cost(s)

= Wierk ¥ ggo @)
+ Waccel Fogo ©))
+ Wspeed [Fmax — Tegol (]
— 2 Wpeed L[ |Emax — Tego| < 0.5 m/s] )
+ Weoltision L[Zego > Tiead] (Flead — Tego)? (6)
+ Weottision I [Tego > Tmax ifgo @)
+ Welearance 1[0 < Ziead — Tego < 8] (Tlead — Tego — 6)2 (8)
+ Welearance 1[0 < Tmax — Tego < 8] (Tmax — Tego)® ©)

Tmax — 2x.ego) (10)
Tmax — 2Cbego)7 (1

+ wstopﬂ[j}ego ~0A (6 < Tiead — Tego < 3m)] (
+ wslopﬂ[j?egu ~O0OA (0 < Tmax — Tego < 2m)] (

where oo = 1/30 is a scaling factor and ¢ is the clearance
buffer, which we set to § = 1 m during training and § = 2
m during evaluation. Eq. 2 and 3 encourage comfort. Eq. 4
and 5 encourage (roughly) following the speed limit. Eq. 6
and 7 penalize collisions. Eq. 8 and 9 encourage maintaining
a certain clearance. Finally, Eq. 10 and 11 encourage the ego
not to stop too far behind. If there is no lead agent, the terms
involving the lead are set to 0.

We use the following reward weights: Wjen
0.05, waced = 0.2, Wspeed = 0.1,  Weollision =
10.0, welearance = 10.0, wgop = 0.1. The discount factor
is v = 0.99.

Termination function. The episode terminates when the
planning horizon H is reached:

if t > H,

otherwise.

We use H = 8 s, which means that tree search and the
rollouts never exceed a depth of 16.

B. MCTS components

We use a variant of MCTS based on the AlphaGo algo-
rithm [46], [49] that can incorporate ML to guide the tree
search towards more promising actions and thus drastically
reduce sample complexity. In particular, a neural network fy
parametrized by 6 can take a state s and action a and output
a policy my and an approximate value estimate Vo:

(mo(a | 5),Va(s)) = fa(s,a),

where the parameters 6 are learned using RL and/or IL. In
our case, we can use fy in the MCTS trajectory generator in
three distinct ways (Fig. 2):
e as a prior P in the tree policy to guide selection,
o as a rollout policy 7oj0ue and/or value function approx-
imator V for leaf evaluation, and

Algorithm 1 Monte Carlo tree search (MCTS) algorithm

1: function SEARCH(s)
2: if F'(s) then

> Termination check

3: return 0
4: end if
5: a < argmax, UCB(s,a) > Selection
6: s« T(s,a) > Transition
7: if N(s,a) =0 then > Evaluation
if F(s') =1

8: U

EVALUATE(s") otherwise
9: else
10: v < SEARCH(s') > Recursive search
11: end if
12: r < R(s,a,s’) > Reward
13: g+r+v > Backup

14: N(s,a) < N(s,a)+1
15: Q(s,a) + Q(s,a) + i(s,a)

N(s,a)
16: return q
17: end function

o as a padding policy Tpadding tO generate trajectories from
the top k leaves in the end.

Selection. For the tree policy, we use the PUCTS for-
mula [46], which is an extension of the standard upper-
confidence bound (UCB) algorithm [56] that uses the tree
statistics @ and NN to balance exploration — selecting unfa-
miliar nodes with low N (s, a) — and exploitation — selecting
rewarding nodes with high Q(s,a):

Q(s,a)

max

UCB(s,a) =

Yy N(s,b)+1 N

+Cpuctp(57a) N(S a) +1 €,

where cpyeq = 1 is the UCB scaling factor, with higher
values promoting more exploration, QJnax = 1 iS a nor-
malization factor for the action-value estimates, and ¢ ~
U(0,0.001) is a small amount of noise added for breaking
ties. When traversing the tree, actions are selected according
to a = argmax, UCB(s,a).

In PUCTS, the prior policy P guides the search by placing
greater weight on actions that are a priori promising — that is,
before simulating their outcomes. For example, at the start of
the tree search, when Q(s,a) = 0, N(s,a) =0 Vs € S,Va €
A, P will dictate which action is selected first.

In our experiments, we consider two possibilities for the
prior policy P:

o the learned RL policy 7y, i.e. P(s,a) = mp(a | s), or

« a uniform policy U, i.e. P(s,a) = 1/|A|.

Evaluation. There are broadly two ways to estimate the
value of a newly visited state s. One option is to use
a bootstrap estimate, i.e. the value learned using Bellman
updates during training. In our case, this corresponds to the
approximate value estimate from the neural network fy:
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EVALUATE(s) = Vy(s)

Another option is to use a Monte Carlo estimate, i.e. the
return from a simulated rollout when following policy myopout:

o0

EVALUATE(S) = Z ,-yj R(Sj7 aj, 5j+1) H[F(Sj) = O]a
§=0

where a; ~ Troliout (- | $5), Sj=0 = s.

We consider tree alternatives for mjiout:

o The learned RL policy, i.e. Troliout = 7o,

o an IDM policy, i.e. Tonout = Tipm, Which deterministi-

cally chooses the acceleration of an IDM, and

« a constant speed (CS) policy, i.e. Tronout = Tcs, Which

always chooses acceleration 0 m/s2.

Notice that mpy and 7cs have a different action space
(acceleration, &g, rather than jerk, 'eg,). Since they are only
used for rollouts, we simply combine them with a modified
transition function that integrates acceleration instead of jerk;
the state space remains unchanged.

Our full MCTS algorithm is shown in Algorithm 1. Note
that tree expansion is implicit, as a new node is added for s
as soon as N(s,a) > 0.

Padding. We experiment with three possibilities for the
padding policy Tpaading tO generate trajectories from the top
k leaves of the resulting tree:

o The learned RL policy, i.e. Tpadding = 7o,

o the IDM policy, i.e. Tpagding = oM, and

o the constant speed policy, i.€. Tpaading = 7cs-

C. State initialization

The MCTS generator constructs the initial state so att = 0
from the following components of the scene context ¢ and
predictions p:

« kinematic ego state: ego center, orientation, velocity,
acceleration, and size (length, width) at the present time
in Cartesian baselink 2D frame (origin is the rear axle
center, x-direction is forward, y-direction is left),

o kinematic agent states: same information for the other
agents from the perception module,

« agent predictions: predicted trajectories (top mode only)
for the other agents from the prediction module as 8-s
waypoint sequences at 2 Hz,

o reference path: the reference path (in our case, the lane
centerline) from the map and routing modules as a
sequence of Cartesian 2D segments.

The longitudinal components of the ego state projected
onto the reference path are used to construct the ego portion
of 50 (Tegos Tegos Tego)- The longitudinal components of the
lead agent portion of Sg (Zjead; Tlead, Llead) are determined
in the same way as for ¢ > 0 (see Transition section),
except using the agent states instead of the predictions. The
maximum longitudinal offset x,x is either the goal pose or
the closest red/yellow traffic light at which the ego can safely
stop (whichever is closest) and remains the same during the
tree search. The speed limit &,,x comes from the map.

Since our focus is on longitudinal control, we assume that
the ego is always on the reference path — i.e., that the lateral
deviation is 0 m — and delegate any lateral correction to
downstream post-processing.

D. Trajectory post-processing

The 1-D longitudinal trajectories resulting from the MCTS
generator are converted to sequences of Cartesian 2D way-
points by taking the corresponding points along the reference
path. These 2-D trajectories are then passed to the IRL scorer.
Finally, the top trajectory chosen by the IRL scorer is passed
to the downstream post-processing system for smoothing and
ensuring kinematic feasibility.

E. RL network and training

The RL network fy is a multilayer perceptron with two
hidden layers of 256 units each for both the policy and the
value function. The network is trained using Proximal Policy
Optimization (PPO) [57] within Stable-baselines3 [58] using
a custom vehicle-following environment. The MDP of the
RL agent is the same as the MDP used in MCTS. PPO
hyperparameters include rollout lengths of 204,800 steps,
batch size of 640, learning rate of 5 x 10~*. During training,
the RL agent observes a range of traffic scenarios, including
lead vehicles maintaining constant speed, high-deceleration
stop events, stop-and-go patterns, sudden cut-in maneuvers,
and cases without a lead vehicle. The policy is trained
for a total of 40 million steps. We find empirically that
this configuration enables the RL agent to acquire stable
and goal-directed behaviors across diverse driving scenarios,
effectively balancing safety, smoothness, and progress toward
the goal.

V. NUPLAN EXPERIMENTS

We evaluate TreeIRL in nuPlan [4] against classical and
state-of-the-art planners on scenarios based on real-world
autonomous driving logs. Our focus is on lane following
and adaptive cruise control (ACC). As we show, even this
restricted domain poses challenges to state-of-the-art ap-
proaches.

NuPlan simulation. We use the open-source nuPlan sim-
ulator [4] to perform 10-Hz closed-loop simulations. The ego
vehicle is propagated using a two-stage controller consisting
of a Linear Quadratic Regulator (LQR) tracker [59], [60]
followed by a kinematic bicycle model. The other agents
are replayed from the log (log-playback). This approach
has been favored by other authors [44], [61]-[63] since, by
definition, it produces human-like behaviors for the other
agents. However, log-playback is non-reactive, which can
make the simulation result unrealistic, particularly if the ego
vehicle deviates too much from the log (e.g., improbable rear
collisions if it is slightly slower). We mitigate this by 1) using
relatively short 20-s simulations (with 4 s of history), and 2)
interpreting the metrics with caution — e.g., rear collisions are
more indicative of progress and human-likeness rather than
safety.
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NuPlan dataset. We evaluate the planners on 7000+
scenarios corresponding to ~40 hours of driving data col-
lected in the Las Vegas metropolitan area by expert human
drivers manually operating the AV. The dataset covers diverse
geolocations with dense urban traffic at different times of day,
including the Las Vegas Strip (68.29%), downtown (17.01%),
airport (7.10%), and west of Strip (4.14%) areas. Scenarios
span different behaviors of the ego and the other agents, such
as starting from stationary (12%), decelerating (12%), cut-ins
(3%), challenging cut-ins (2%), challenging ACC (3%), lead
vehicle breaking (2%), remaining stationary (18%), as well
as nominal driving (48%).

NuPlan metrics. We compute the following metrics:

« Collisions: instances when the ego bounding box first
intersects that of another agent. We only count at-
fault collisions, that is, collisions that could have been
avoided if the ego had slowed down (roughly corre-
sponding to front collisions).

« Drivable area violations: instances when the the ego
bounding box is more than 0.3 m outside the mapped
drivable area.

« Traffic light violations: instances when the ego crosses
a stop line during a red light.

o Speed limit violations: continuous measure of how
often the ego exceeds the speed limit (O = no violations,
1 = significant violations).

o Time gap: minimum time gap (i.e., projected time-
to-collision with nearby agents). Small values indicate
close calls.

« Progress along expert route: ego progress along the
route relative to the expert ground truth.

« Comfort: indicates whether the ego acceleration, yaw
rate, and jerk remain within bounds empirically de-
rived from the expert data: longitudinal accel €
[—4.05, 2.40] m/s*, absolute lateral accel < 4.89 m/s?,
absolute yaw accel < 1.93 rad/sz, absolute yaw rate
< 0.95 rad/s, absolute longitudinal jerk < 4.13 m/s3,
absolute jerk magnitude < 8.37 m/s>.

« Min/max longitudinal jerk: minimum and maximum
longitudinal jerk (close to 0 is most comfortable).

« Min/Max longitudinal accel: minimum and maximum
longitudinal accelerations (close to 0 is most comfort-
able).

e L2 error: average pointwise L2 distance between ego
and expert trajectories.

« Deceleration/acceleration delay error: how much later
the ego begins to decelerate/accelerate compared to the
expert.

« Max speed error: maximum speed difference between
the ego and the expert, normalized w.r.t. the maximum
expert speed.

Metrics are averaged across simulations for each planner.

A. Tuning MCTS

We first compare different configurations of MCTS by
taking only the top 1 trajectory (i.e., £ = 1; Fig 2, bottom
left), while treating the IRL scorer as pass-through. By

MCTS: RL prior, RL rollout
MCTS: RL prior, RL value
MCTS: RL prior, IDM rollout
MCTS: RL prior, CS rollout
MCTS: uniform prior, RL rollout
MCTS: uniform prior, RL value
MCTS: uniform prior, IDM rollout
MCTS: uniform prior, CS rollout
standalone RL policy
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effectively disabling the IRL scorer, we can evaluate MCTS
on its own as a standalone planner, as is typically done.
This allows us to explore the parameter space of the MCTS
trajectory generator without having to retrain the IRL scorer
for every MCTS configuration.

MCTS configurations. We explore different combinations
of:

e prior policy P: RL policy (7p) or uniform policy ({£4),

o evaluation function: RL critic (Vg) or RL rollout (mg) or

IDM rollout (mpMm) or constant speed rollout (7cs),

¢ padding policy: RL (my) or IDM (mpm) or constant

speed (mcs).

We also evaluate against the standalone RL (7g) and IDM
(mpm) policies, which correspond to the special case of the
MCTS generator when each of them is set the padding policy
Tpadding and the number of iterations is set to n = 0.

Progress vs. safety. With n = 400 iterations, using the
RL policy either as a prior (P = my) or as a rollout policy
(Trollout = Tg) tends to produce more conservative behavior,
with fewer collisions but also less progress (Fig. 5). Results
are similar when using the RL critic Vp. In contrast, a uniform
prior (P = U 4) results in more aggressive behavior overall,
with more progress but also more collisions. With a uniform
prior, the IDM rollout policy (7000t = 7pMm) 1S strictly better
than the constant speed rollout policy (Tronout = 7cs)-
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TABLE I
MCTS LATENCY MEASUREMENTS

V/7Tmll()ut

n k P Tpadding Latency (ms)
400 100 o o 911.79 £ 15.26
400 100 7 Vy o 255.95 + 4.97
400 100 Uyl TIDM TIDM 45()7 :|: 1.14
400 100  mg TCS TIDM 52.32 £+ 2.69
400 100 Uy o 9 691.72 % 8.73
400 100 Unx LO) TIDM 569.49 £ 8.49
400 100 Unx Vo e’} 181.38 £+ 2.73
400 100 Ux Vo TIDM 48.66 + 0.65
400 100 Ux TIDM ') 151.42 4+ 4.03
400 100 Ux TIDM TIDM *10.05 £ 2.79
400 100 MA TIDM ey 6.00 + 0.14
400 100 Ux TCsS TIDM 4.88 + 0.10
400 100 U TCsS TCS 493 £ 0.14

0 1 n/a n/a o 2.21 £ 0.05

0 1 n/a n/a TIDM 0.03 £ 0.001

* — configuration chosen for subsequent experiments.

Iterations. With a uniform prior (P = U4), IDM rollout
(Trollowr = 7mm), and IDM padding (7padaing = TioM):
performance plateaus around n = 400 iterations (Fig. 6).

Latency. Real-world deployment makes latency a critical
consideration, as the benefit of an improved planner can
be lost if it is too slow to react. We compare the latency
of different MCTS trajectory generators with & = 100
trajectories — as they would be used with IRL — on 100
scenarios each. Latency is measured on a Lenovo ThinkPad
laptop running Ubuntu 22.04 with an Intel Core i19-10885H
CPU (2.40 GHz base, up to 5.30 GHz turbo, 8 cores/16
threads) and 16 MB L3 cache, restricted to a single CPU
thread (as on the car).

Relying on the learned policy my for the rollouts is around
two orders of magnitude slower than relying on the IDM
policy mpm (Tab. I). For padding, the difference is around
one order of magnitude. Our goal is to run the planner on
the car at 10 Hz or more, so any latency above 100 ms is
unacceptable. This effectively excludes configurations with
Trollout = 719 OI Tpadding = 79-

Intermediate discussion. The relatively conservative be-
havior of the learned policy 7y is likely due to the low-
dimensional state space, which only captures the ego and
lead vehicles. Since the RL policy is model-free, this is the
only information it can use to make decisions. As a result,
the RL policy is effectively “blind” to any agent that is not
immediately in front of it, until that agent actually appears.
Because of this, the RL policy cannot anticipate, for example,
that an agent would cut in from an adjacent lane; so in
order to avoid collisions, it converges on more conservative
behavior overall.

In contrast, MCTS is model-based and, in our case, it
can use the predictions to evaluate the consequences of its
actions. As a result, despite using the same low-dimensional
state space, MCTS can anticipate cut-ins and other kinds
of interactions. For example, if a cut-in is unlikely, it will
evaluate actions that make progress as more rewarding;
conversely, if a cut-in is likely, it will prefer conservative
actions that avoid collisions. This leads to improved progress
and safety compared to the standalone RL and IDM planners.

Given the latency costs of the learned policy 7y and its
overly conservative bias (as well as that of Vg), we use the
following parameters for the MCTS generator in subsequent
experiments: n = 400,k = 100,P = U, Trolonr =
TIDM; Tpadding = TIDM -

B. TreelRL evaluation

Baselines. We evaluate TreeIRL against the following
following classical and state-of-the-art baselines (Fig. 1):

o The intelligent driver model (IDM) [26]: a classical
planner that computes the acceleration for collision-free
ACC in closed form,

o MCTS, corresponding to TreeIRL with k£ = 1 trajectory,
i.e. treating the IRL scorer as pass-through (Fig. 3,
bottom left),

o Path-based prediction (PBP) [32]: an open-loop mo-
tion forecasting model trained using imitation learning
(Fig. 3, middle left),

o DrivelRL [24]: precursor to TreeIRL using the same
planner architecture, except with a heuristic trajectory
generator that generates jerk-optimal trajectories reach-
ing a set of predefined target points (Fig. 3, bottom
middle),

o Gigaflow [40]: a RL-based motion planner trained in
closed loop using self-play, with the same policy con-
trolling the ego and all other agents (we use an in-
house implementation based on [40], as there is no
code/weights available),

o DrivelRL-Safe [24]: identical to DrivelRL, with the
addition of a safety filter as described in [24], [43]
that excludes any apparently unsafe trajectories (Fig. 3,
bottom middle).

Results. Most planners exhibit comparable and acceptable
safety and progress (Tab. II, Fig. 7), with the exception of
IDM, PBP (collisions), and Gigaflow (drivable area viola-
tions). Comfort is comparable across planners, except for
Gigaflow. IDM comfort is also on the lower side, especially
longitudinal jerk and acceleration. Similarity to the human
expert driver is comparable across planners, except for Gi-
gaflow and IDM.

Based on these results, we exclude IDM, PBP, and Gi-
gaflow from subsequent experiments and analyses, focusing
only on MCTS, DrivelRL, DrivelRL-Safe, and TreeIRL.

Since the collision metric appears saturated across all
scenarios, we further zoom in on a subset of challenging cut-
in cases where an agent appears abruptly at a short distance
in front of the ego (Tab. III). On this set, DriveIRL-Safe
and TreelRL have around half as many collisions as MCTS
and DrivelRL, while maintaining the same level of progress.
While safety and similarity to the human expert driver is
better for DriveIRL-Safe compared to TreeIRL, comfort is
substantially worse.

VI. REAL-WORLD DRIVING

The ultimate test for a planner is how it performs in the
real world. To that end, we deploy the four most promising
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TABLE 11
NUPLAN EVALUATION (7,051 SCENARIOS)

Category Metric IDM MCTS PBP DriveIRL Gigaflow DriveIRL-Safe  TreeIRL
Collisions | 0.02 0.01 0.05 0.01 0.01 0.01 0.01
Drivable area violations | 0.01 0.01 0.03 0.01 0.11 0.01 0.01
Safety Traffic light violations | 0.02 0.02 0.05 0.02 0.04 0.02 0.02
Speed limit violations |, 0.09 0.28 0.18 0.12 0.29 0.12 0.20
Time gap (s) 1 3.73 3.68 3.63 3.85 3.42 3.97 3.90
Progress Progress along expert route 1 0.90 0.96 0.92 0.90 0.89 0.89 0.92
Comfort 1 0.92 0.98 0.97 0.99 0.38 0.93 0.98
Min longitudinal jerk (m/s3) 1 -1.08  -087  -0.66 -0.44 -2.59 -0.61 -0.77
Comfort Max longitudinal jerk (m/s3) | 1.06 1.16 0.88 0.55 2.58 0.71 0.84
Min longitudinal accel (m/s2) T -0.99 -0.67 -0.52 -0.43 -1.65 -0.47 -0.59
Max longitudinal accel (m/s?) | 041 0.75 0.67 0.38 1.74 0.55 0.57
L2 error (m) | 4.53 3.82 3.86 3.53 8.44 3.56 3.75
BT Deceleration delay error (s) |{/| 0.32 0.31 0.42 0.14 0.78 0.15 0.43
Human-likeness " cleration delay error (s) 1|~ 006  -023  -0.56  0.09 0.41 023 -0.11
Max speed error | 0.91 0.27 0.45 1.25 0.43 1.17 0.45

MCTS DrivelRL DrivelRL-Safe TreeIRL

Fig. 7. NuPlan examples of DriveIRL collisions avoided by TreeIRL. Each row corresponds to a different scenario. Columns correspond to snapshots of

the same moment in time for different planners.

TABLE III
NUPLAN EVALUATION ON CHALLENGING CUT-INS (134 SCENARIOS)

Metric MCTS DrivelRL DrivelRL-Safe TreeIRL
Collisions | 0.31 0.34 0.16 0.19
Drivable area violations | 0.01 0.01 0.01 0.01
Traffic light violations J 0.00 0.01 0.01 0.00
Speed limit violations | 0.17 0.16 0.14 0.13
Time gap (s) T 0.72 0.67 1.02 1.01
Progress along expert route 7 0.99 0.98 0.98 0.98
Comfort 1 0.84 0.86 0.75 0.87
L2 error (m) | 6.60 5.50 3.30 5.28

planners on Hyundar IONIQ 5 self-driving cars and evaluate
them on public roads in Las Vegas.

High-fidelity simulation. As in previous work [19], prior
to on-road deployment, performance of the planning system

is thoroughly evaluated using the Object Sim simulator from
Applied Intuition [64], which performs realistic high-fidelity
physics simulation of vehicle dynamics. Unlike nuPlan,
which is Python-based, only simulates the planner, and uses
a simplified simulator, Object Sim simulates the entire AV
stack in a more realistic setting closely resembling real-world
deployment. This allows us to get a better sense of on-road
performance and to catch integration issues that may not
appear in nuPlan. As in nuPlan, other agents are replayed
from the log. All simulations are in closed loop, last 30 s
(including 4 s of warmup), and run at 10 Hz.

Overall, nuPlan can be viewed as a cheap and fast way
to get an initial sense of planner performance, making it
useful for parameter tuning and for ruling out obviously
inferior planners. In contrast, Object Sim is a robust yet
computationally intensive way to get a more realistic sense
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of planner performance in the context of a full AV stack.

Simulation scenarios. We use a set of 600+ handpicked
scenarios based on on-road events in Las Vegas metropolitan
area that were particularly challenging for the AV, including
close ACC (5%), encroachments (2%), cut-ins (2%), traffic
lights (7%), low speed (6%), high speed (11%), far gap
behind lead (15%), harsh braking (17%), lane biasing (6%),
jerky driving (24%).

On-road scenarios. Routes cover similar geolocations to
the simulations, including the Strip, downtown, and west
of Strip areas. Driving in Las Vegas involves navigating
dense urban traffic, handling traffic lights and intersections,
smoothly following and breaking for other drivers, respond-
ing safely and comfortably to cut-ins and lead vehicle break-
ing. All on-road tests are performed with an experienced
safety driver ready to take over immediately in case of unsafe
driving, as well as an experienced test engineer continuously
monitoring AV performance.

Simulation metrics. We use a similar set of metrics to
nuPlan, with some differences largely due to the differences
in the simulators and the data.

« Front collisions: instances when the ego collides at the
front while moving (speed > 0.01 m/s).

o Traffic light violations: instances when the ego fully
crosses the stop line of a red traffic light.

« Stop line violations: instances when the ego partially
crosses the stop line of a red traffic light.

o Speed limit violation time: total time spent driving
above the speed limit.

« ACC distance violations: instances when the following
distance to the lead vehicle drops below 1.5 m.

« Min time gap: minimum time gap to the lead vehicle.
Small numbers indicate close calls.

« Average speed: average ego speed.

« Rear collisions: instances when the ego is hit from
behind. Due to the non-reactive simulation, these are
interpreted as a measure of progress: rear collisions
indicate slower driving / not keeping with the flow of
traffic.

« Brake taps: instances when the negative longitudinal
jerk (brake) exceeds 4.25 m/s>.

« Longitudinal jerk violations: instances when the ab-
solute longitudinal jerk exceeds 5 m/s>.

« Lateral jerk violations: instances when the absolute
lateral jerk exceeds 7 m/s>.

As in nuPlan, simulation metrics are reported as averages
across simulations.

On-road metrics. Metrics that are useful in simulation
may not be practical when assessing real-world driving. For
example, collisions will always be 0, as the safety driver
will take over before any real collision actually occurs. We
therefore measure on-road performance with a combination
of discretionary and objective metrics. Discretionary metrics
correspond to events manually tagged at the discretion of the
test team onboard the AV during road tests. These include
takeovers by the safety driver when AV behavior is deemed
unsafe, as well as manually flagged events corresponding to

TABLE IV
DEPLOYMENT STRATEGY LATENCY MEASUREMENTS

Statistic ~ DriveIRL + Lab2Car (ms)  DriveIRL + Smoother (ms)
Max 246.70 26.16
P99.99 246.70 26.16
P99 208.81 20.95
P50 60.23 14.29
Average 73.09 14.63

comfort or progress issues. Objective metrics are computed
after-the-fact based on data logged by the AV.
We use the following discretionary metrics:

« Safety takeovers: any takeover by the safety driver due
to unsafe AV behavior.

o ACC failures: safety takeover preventing collisions with
a lead vehicle.

« Traffic light failures: safety takeovers preventing traffic
light violations.

e Cut-in failures: safety takeovers preventing collisions
due to cut-ins.

« Slow driving: instances when the AV drives too slowly.

o Discomfort: any instance of uncomfortable driving
(jerky or discomfort braking).

« Jerky driving: instance of jerky driving, e.g. brake taps
or jerky throttle.

o Harsh/mild discomfort braking: instances of se-
vere/light uncomfortable braking.

We use the following objective metrics:

o Harsh/mild discomfort braking: output of classifier
trained to predict human-annotated harsh/mild discom-
fort braking based on vehicle kinematics.

« Brake taps: identical to brake taps in simulation.

All on-road metrics are reported as autonomous driving
miles (auto-miles/auto-mi) per event.

A. Deployment strategy

Like most ML-based planners, DriveIRL and DrivelRL-
Safe do not ensure kinematic feasibility. MCTS and TreeIRL
ensure kinematic feasibility only longitudinally. Neither plan-
ner ensures dynamic feasibility. This necessitates performing
some kind of post-processing on the output trajectory 7
before passing it to the downstream drive-by-wire system
for execution.

We consider two deployment strategies:

o Lab2Car [19]: a two-step process that converts 7 into a
set of spatiotemporal constraints — a “maneuver” — that
incorporate information about vehicle dynamics, road
geometry, and (optionally) other agents (although we
do not take advantage of that feature). The resulting
optimization problem is solved using an industry-grade
MPC solver.

o Smoother: a lightweight MPC that applies minor kine-
matic corrections to 7 and performs bookkeeping to
ensure continuity between planning cycles. The opti-
mization is performed using a kinematic bicycle model
in Cartesian 2D coordinates.
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TABLE V
COMPARING DEPLOYMENT STRATEGIES

Category  Metric DrivelRL MCTS
+ Lab2Car  + Smoother + Lab2Car  + Smoother
High-fidelity 30-s simulations
Total simulations 605 605 605 605
Front collisions | 0.05 0.05 0.05 0.05
Safet Speed limit violation time (s) J 4.14 5.76 3.94 3.68
y ACC distance violations (< 1.5 m) | 0.20 0.25 0.19 0.19
Min time gap (s) T 1.26 1.01 1.48 1.43
Progress Average speed (m/s) T 8.32 8.23 9.82 9.79
Brake taps | 0.18 0.29 0.29 0.27
Comfort  Longitudinal jerk violations | 0.12 0.17 0.29 0.23
Longitudinal accel violations | 0.23 0.29 0.54 0.50
Public road evaluation

Total auto-miles 40.8 34.8 62.1 64.1
Harsh discomfort braking (mi/event) 1 40.8 8.70 5.17 9.16
Comfort Mild discomfort braking (mi/event) 1 40.8 11.60 5.17 8.01
Brake taps (mi/event) T 1.57 0.87 0.60 1.49

Deployment strategies compared separately for DriveIRL and MCTS.

We first deploy DrivelRL with each strategy and measure
the system latency using open-loop resimulations on identical
logs using identical hardware as on the car (Tab. IV). Using
the Smoother is about an order of magnitude faster than using
Lab2Car. However, subsequent closed-loop simulations and
real-world driving (Tab. V) show that DriveIRL + Lab2Car
performs better across all metrics compared to DriveIRL +
Smoother. Interestingly, we observe the opposite pattern for
MCTS.

Interim discussion. We suspect MCTS fails to benefit
from Lab2Car due to its bookkeeping mechanism and jerk
controls, which make it sensitive to latency, particularly in an
asynchronous environment. For example, consider the case
when MCTS commands braking with jerk -2 m/s® from
cruising speed. Initially, the deceleration will be small; this
will be sent to Lab2Car, which will command a gentle brake.
However, while Lab2Car is still running, MCTS (which is
must faster and hence runs at higher frequency) will run
for several iterations, each commanding jerk -2 m/s? and
assuming that the previous jerk command was executed (due
to bookkeeping). MCTS will thus quickly reach the max
decel of -7 m/s?. At the next cycle when Lab2Car finally
catches up, the MCTS trajectory will now appear to suddenly
command a harsh brake, leading to discomfort.

In contrast, DriveIRL plans from the measured pose,
making it more robust to downstream delays. However, this
means it may also be less reactive.

For all subsequent experiments, we  deploy
DrivelRL/DrivelRL-Safe with Lab2Car and MCTS/TreelRL
with the Smoother.

B. TreelRL evaluation

We integrate MCTS, DrivelRL, DrivelRL-Safe, and
TreeIRL with the Motional AV-stack (Fig. 3) and compare
them in simulation, using our full-stack simulator, and in
the real world, using Hyundar IONIQ 5 self-driving cars
(Tab. VI, Fig. 8 & 9).

High-fidelity simulations largely recapitulate the nuPlan
results, with DriveIRL showing better comfort and TreeIRL
showing better safety. TreeIRL generally shows improved
comfort over MCTS while having relatively comparable
safety and progress, highlighting the benefit of the IRL scorer.
DriveIRL-Safe has comparable safety to TreeIRL (except
for traffic light and stop line violations), but worse comfort
overall. Analyses of individual simulations (Fig. 8) show that
DrivelRL fails to stop on time to prevent collisions, while
DrivelRL-Safe stops too soon and too abruptly. Together,
these results validate the conclusions from the nuPlan simu-
lations and the choice of deployment strategy.

The on-road results, however, overwhelmingly favor
TreeIRL across all metrics. Safety is ~2 orders of magnitude
better than DrivelRL and 2-4x better than DriveIRL-Safe
and MCTS, with zero takeovers by the safety driver due to
ACC or cut-in failures across all 268 auto-miles. Progress is
comparable to MCTS and substantially better than DriveIRL
and DrivelRL-Safe. Analysis of individual on-road cut-ins
(Fig. 9) reveal similar kinematic profiles to the simulations:
MCTS deceleration is somewhat jerky, DriveIRL slows down
insufficiently to prevent takeovers, DriveIRL-Safe brakes too
aggressively, and TreeIRL slows down with the smoothest de-
celeration profile. Interestingly, in contrast to the simulations,
both subjective and objective comfort is better for TreeIRL
compared to DrivelRL.

Interim discussion. The substantially larger advantage
of TreeIRL over the other planners on the road compared
to simulation is partly due to the subjective nature of the
discretionary metrics. Specifically, the safety driver may take
over if AV behavior is perceived to be unsafe, even if it
would not have resulted in a collision. Indeed, resimulations
confirm that this is the case for a substantial number of
takeovers. However, as a measure perceived safety, takeovers
better reflect the subjective experience of the rider, which
in some sense is the ultimate yardstick for measuring AV
performance. The sudden braking during takeovers addition-
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TABLE VI
HIGH-FIDELITY SIMULATION AND ON-ROAD EVALUATION

Category  Metric MCTS  DriveIRL  DrivelRL-Safe  TreeIRL
High-fidelity 30-s simulations
Total simulations 717 717 717 717
Front collisions | 0.04 0.05 0.03 0.03
Traffic light violations | 0.01 0.04 0.04 0.01
Safet Stop line violations | 0.01 0.06 0.04 0.01
y Speed limit violation time (s) J 3.81 4.39 2.07 5.01
ACC distance violations (< 1.5 m) | 0.17 0.20 0.24 0.19
Min time gap (s) T 1.56 1.29 1.31 1.45
Proer Average speed (m/s) T 8.88 8.41 8.31 8.88
OBICSS  Rear collisions | 0.17 0.16 0.28 0.19
Brake taps | 0.27 0.18 0.32 0.22
Comfort  Longitudinal jerk violations | 0.23 0.12 0.23 0.17
Longitudinal accel violations | 0.49 0.23 0.31 0.56
Public road evaluation
Total auto-miles 115.8 64.3 87.9 268.4
Discretionary metrics
Safety takeovers (mi/event) 1 7.68 1.43 6.76 17.89
Safet ACC failures (mi/event) 1 57.9 2.57 87.9 >268.4
y Traffic light failures (mi/event) 1 19.3 8.04 12.56 67.10
Cut-in failures (mi/event) T >115.8 5.36 43.95 >268.4
Progress Slow driving (mi/event) 1 >115.8 5.85 2.84 134.2
Discomfort (mi/event) T 1.40 1.74 1.05 2.42
Comfort  Jerky driving (mi/event) 1 2.83 6.43 2.20 13.42
Harsh discomfort braking (mi/event) 1 6.09 4.95 3.66 8.95
Mild discomfort braking (mi/event) 1 2.83 3.22 3.26 12.78
Objective metrics
Harsh discomfort braking (mi/event) 1 8.91 4.29 4.88 9.59
Comfort Mild discomfort braking (mi/event) 1 7.24 64.3 17.58 15.79
Brake taps (mi/event) T 1.08 0.43 1.03 1.11

ally impacts comfort, which is likely the main factor behind
the worse comfort of DrivelRL on the road compared to the
simulations.

It is worth noting that the on-road results for DriveIRL
and DrivelRL-Safe are in line with previous reports [24] of
2 takeovers for 8.8 auto-miles and O takeovers for 6.9 auto-
miles, respectively, albeit on a much smaller evaluation.

VII. GENERAL DISCUSSION AND CONCLUSIONS

We presented TreeIRL, a novel combination of MCTS and
IRL for autonomous driving that outperforms the state of the
art in simulated and real-world urban driving in terms of
safety, progress, comfort, and human-likeness. To the best
of our knowledge, this is the first real-world evaluation of
a motion planner based on MCTS. We suspect this is due
to latency: since the size of the search space (i.e., number
of possible trajectories) is exponential in the size of the state
space, most applications of MCTS to motion planning require
more iterations to converge than is practically feasible on
a real AV. One solution is to use a learned policy [49];
however, this requires performing inference-in-the-MCTS-
loop — potentially multiple times during the rollouts — which
further strains latency. While this can be overcome with more
compute and parallelization [46], this is not always feasible
on board a real AV where multiple systems compete for
scarce resources in real time.

Instead, by combining MCTS with IRL, we can relax the
demands on the MCTS generator, as it no longer needs to

find the single best trajectory but merely to home in on a
promising subset of the trajectory space and lean on the IRL
scorer to choose the best trajectory. One way to view this is
that MCTS handles safety, by choosing a safe behavior mode,
while IRL handles comfort, by choosing the most human-like
variation around that mode. Indeed, our simulation (Tab. II)
and on-road (Tab. VI) results indicate that the biggest gain
of TreeIRL over vanilla MCTS is in comfort, although safety
is also improved.

On the road, TreeIRL showed close to 2 orders the
magnitude better safety than DriveIRL (Tab. VI), high-
lighting the benefits of combining classical and learning-
based approaches. Accordingly, the advantage of TreeIRL
over DriveIRL-Safe — another hybrid system — was smaller.
However, DrivelRL-Safe was inferior to both TreeIRL and
DrivelRL in terms of comfort and progress. This highlights
the limitations of naive enumerative trajectory generation,
which can fail to provide sufficient coverage of the trajectory
space: once the safety filter rules out apparently “bad” tra-
jectories, there may be insufficient diversity in the remaining
trajectories to ensure comfort and progress.

The emergence of public simulators and benchmarks such
as nuPlan [4], CARLA [65], and Waymax [66], [67] has
been instrumental in advancing motion planning research by
facilitating the comparison of different planners on an equal
footing. However, compressing planner performance into a
single scalar score can obfuscate critical planner limitations
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(Tab. II). Until a single universal gold standard metric is
designed and agreed upon, we believe planners should be
compared holistically across a diverse set of metrics captur-
ing safety, progress, and comfort (Fig. 1, bottom right).

Our work also highlights the limitations of relying solely
on simulation to assess planner performance. The discrepancy
between simulated and real-world performance — the sim-to-
real gap — is well-documented [38], [68], yet it is nevertheless
striking that the relatively small advantage of TreeIRL in
simulation (Tab. II) translated to 1-2 orders of magnitude
improvement on the road (Tab. VI). Until simulation fidelity
improves to reliably match on-road performance — a problem
nearly as hard as the planning problem itself — we believe
early on-road tests [19] should be a critical part of compre-
hensive planner evaluation. Thus planner comparison should
proceed both holistically and incrementally, with a broad set
of experimental planners evaluated in simulation on a broad
set of metrics and then narrowed down to a smaller set of
promising planners that are deployed and evaluated in the
real world.

An alternative way to combine MCTS with IRL would
be to replace the handcrafted reward function R (Eq. 2-11)
with a reward function learned from data. This learned reward
function can be directly plugged into MCTS and/or used to
train the RL network fy. This could obviate the need for a
learned trajectory scorer, as the reward function itself would
already capture human-likeness. Yet another way to rid of
the IRL scorer would be to train fp with a hybrid of RL and
IL [44].

Our work can be further extended in multiple ways.
Prediction uncertainty could be accounted for by considering
multiple prediction modes and averaging rewards over them.
Alternatively, predictions could be replaced by a reactive
world model, such as TrafficSim [39] or Gigaflow [40]. Gi-
gaflow could also facilitate the expansion of the state/action
space to include lateral control by replacing the RL network
fo, as planning in 2D instead of 1D would likely require
prohibitively many iterations if MCTS is guided by a simple
policy such as the IDM. This would enable new capabilities
such as lane biasing and lane changes, which we leave
as the subject of future work. Overall, TreeIRL can be
seen as a framework for tackling the planning bottleneck
in autonomous driving by combining the strengths of tree
search, RL, IL, and IRL in a single planner architecture that
facilitates robust comparisons in simulation and in the real
world.
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